「2023-07-05-7 JANOG52 参加レポート」の版間の差分
編集の要約なし |
|||
5行目: | 5行目: | ||
海底ケーブルを敷設・保守する、NTT-WEM (ワールド エンジニアリング マリン) の運用する船、きずなを見学させてもらいました。 | 海底ケーブルを敷設・保守する、NTT-WEM (ワールド エンジニアリング マリン) の運用する船、きずなを見学させてもらいました。 | ||
==== 船の所有について ==== | |||
2017 年 3 月 31 日 に竣工し、[https://www.ntt-finance.co.jp/news/170331.html NTT ファイナンスが保有して、NTT-WE にリースで貸し出して]います。 | 2017 年 3 月 31 日 に竣工し、[https://www.ntt-finance.co.jp/news/170331.html NTT ファイナンスが保有して、NTT-WE にリースで貸し出して]います。 | ||
船舶や飛行機では投資家などから資金を募って、購入資金を集めるファイナンスが一般的ですが、本船はどのようなオーナーがいるのか気になりますね。 | |||
今回船内の写真は撮影禁止なため、Web で見つかった記事のリンクを記載します。 | |||
* [https://www.ntt.com/bizon/k-1.html 最新鋭のケーブル敷設船「きずな」の内部に潜入!] | * [https://www.ntt.com/bizon/k-1.html 最新鋭のケーブル敷設船「きずな」の内部に潜入!] | ||
28行目: | 29行目: | ||
==== 保守 ==== | ==== 保守 ==== | ||
保守契約を結んだ海底ケーブルの運用企業から障害連絡を受けると、 | |||
* 関係省庁へ手続き | * 関係省庁へ手続き | ||
38行目: | 39行目: | ||
ケーブルは敷設時期・保有/運用企業により異なるため、保守ではケーブルを搭載しておらず、出港時に交換対象のケーブルを積み込みます。 | ケーブルは敷設時期・保有/運用企業により異なるため、保守ではケーブルを搭載しておらず、出港時に交換対象のケーブルを積み込みます。 | ||
数は少ないようですが、光ファイバ以外に同軸の海底ケーブルも存在するとのこと。 | |||
==== 災害対応 ==== | ==== 災害対応 ==== | ||
58行目: | 59行目: | ||
ややこしいですが、内燃機関を搭載しないわけではなく、[http://naikou00.blog70.fc2.com/blog-entry-3042.html?sp ダイハツ ディーゼル 6DCM-32e 3,500ps x4 基を搭載]して発電を行い、スラスターを電気駆動します。車でいうとホンダ アコード ハイブリッドやノート e-Power などの'''シリーズ ハイブリッド'''が近い方式だと言えます。 | ややこしいですが、内燃機関を搭載しないわけではなく、[http://naikou00.blog70.fc2.com/blog-entry-3042.html?sp ダイハツ ディーゼル 6DCM-32e 3,500ps x4 基を搭載]して発電を行い、スラスターを電気駆動します。車でいうとホンダ アコード ハイブリッドやノート e-Power などの'''シリーズ ハイブリッド'''が近い方式だと言えます。 | ||
一般的な船尾の舵は、推進時に向きを変化させる (推進しないと転舵できない) | # エンジンで発電 | ||
# 電気推進機を駆動 | |||
# プロペラを回転 | |||
一般的な船尾の舵は、推進時に向きを変化させる (推進しないと転舵できない) ものであるため、搭載されていません。 | |||
==== [https://www.nttwem.co.jp/service/lay/ DPS] (Dynamic Positioning System) ==== | ==== [https://www.nttwem.co.jp/service/lay/ DPS] (Dynamic Positioning System) ==== | ||
風・潮流などの影響を計算して GPS | 風・潮流などの影響を計算して GPS の位置情報を補正し、推進機と連動して特定の位置に船を保持できるシステム。 | ||
リアルタイムでズレを測定し、その他の外乱要因も補正できるそうです。 | |||
====[https://ja.wikipedia.org/wiki/ROV ROV] (Remote Operated Vehicle) [http://naikou00.blog70.fc2.com/blog-entry-3041.html?sp CaRBIS- Ⅳ] ==== | |||
海底の確認やケーブルの切断・引き上げを行う、200 馬力の無人潜水機のこと。 | |||
船上の建物であるコントロール ルームから、液晶 9 画面とコンソールで操作します。 | |||
ケーブル クリッパーは 27 トンのケーブル引き上げ能力を持ち、これはケーブル エンジンと同じ能力になっています。 | ケーブル クリッパーは 27 トンのケーブル引き上げ能力を持ち、これはケーブル エンジンと同じ能力になっています。 | ||
またウォーター ジェットで海底の砂を巻き上げて、ケーブルを埋設させる装備なども備えています。 | またウォーター ジェットで海底の砂を巻き上げて、ケーブルを埋設させる装備なども備えています。 | ||
他には金属探知機・マニピュレータ・カメラ・磁気センサーなどがあります。 | |||
==== 海底ケーブルの障害原因 ==== | ==== 海底ケーブルの障害原因 ==== | ||
近海では漁で碇を下ろす・網に引っかかって誤って切断してしまう、浅海では地震・台風・潮流でケーブルがこすられて破損、といった原因があるそうです。 | |||
深海では潮流の影響が少ないため、逆に'''細いケーブルを使用してコストを下げられたりする'''とのこと。 | |||
深海探査機などでは深海のほうが水圧でコストがかかるため、これは意外でした。 | |||
==== 航海期間 ==== | ==== 航海期間 ==== | ||
83行目: | 94行目: | ||
2,500km のケーブルを収容でき、4 回で日米間 10,000km のケーブルを敷設できるようなスケールとなっています。 | 2,500km のケーブルを収容でき、4 回で日米間 10,000km のケーブルを敷設できるようなスケールとなっています。 | ||
実際には米国側のケーブルは米国側から敷設・メンテナンスを行うほうが効率的なため、数分の一 + | 実際には米国側のケーブルは米国側から敷設・メンテナンスを行うほうが効率的なため、数分の一 + 余長程度のキャパシティがあれば問題ないようです。また、きずなは保守がメインの船であるため、キャパシティは低めと思われます。 | ||
ケーブルの積載はまだ自動化できていない分野で、どうしてもねじりなどでキレイに巻けないため、手動で巻いています。 | ケーブルの積載はまだ自動化できていない分野で、どうしてもねじりなどでキレイに巻けないため、手動で巻いています。 | ||
光のリピータは組み込まれた状態でケーブル タンクに搭載されるため、敷設時はリニア ケーブル エンジンなどで巻き込み事故が起こらないように低速化して作業するそうです。スキー場のリフトのように、乗り込むときだけ低速化されるのに近いですね。 | |||
==== [https://weekly.ascii.jp/elem/000/001/482/1482904/2/ ドラム ケーブル エンジン] ==== | ==== [https://weekly.ascii.jp/elem/000/001/482/1482904/2/ ドラム ケーブル エンジン] ==== | ||
直径 2.7m の金属ドラムを使ったケーブル巻き上げ機です。ケーブルの敷設は海底の高さを考慮して行う必要があるため、[https://www.nttwem.co.jp/service/lay/ | 直径 2.7m の金属ドラムを使ったケーブル巻き上げ機です。ケーブルの敷設は海底の高さを考慮して行う必要があるため、[https://www.nttwem.co.jp/service/lay/ 送り出す速度を変化させて対応]します。 | ||
巻き上げ時は横幅に対して均等に巻き上げ・敷設するため、2 つの[https://www.mhi.com/jp/group/mhimme/news/meet_no21_05.html フリーティングナイフライニングで均等になるように巻き付け]ます。 | 巻き上げ時は横幅に対して均等に巻き上げ・敷設するため、2 つの[https://www.mhi.com/jp/group/mhimme/news/meet_no21_05.html フリーティングナイフライニングで均等になるように巻き付け]ます。 |
2023年7月5日 (水) 18:37時点における版
Day1
ケーブル敷設船きずな見学会
海底ケーブルを敷設・保守する、NTT-WEM (ワールド エンジニアリング マリン) の運用する船、きずなを見学させてもらいました。
船の所有について
2017 年 3 月 31 日 に竣工し、NTT ファイナンスが保有して、NTT-WE にリースで貸し出しています。
船舶や飛行機では投資家などから資金を募って、購入資金を集めるファイナンスが一般的ですが、本船はどのようなオーナーがいるのか気になりますね。
今回船内の写真は撮影禁止なため、Web で見つかった記事のリンクを記載します。
海底ケーブル
多芯ファイバー・電力線・外皮を備えたものを海底ケーブルに使用します。
距離が遠い場合はリピータを使用し、光を増幅して中継します。
リピータは電力を消費するため、電力線はここで使用されます。
電圧が 10,000-15,000V 程度と高く、電流は少なくて良いそうです。
海底ケーブル自体の所有は海底ケーブルの運用会社となっており、NTT-WEM では所有していない扱いになっているそうです。
保守
保守契約を結んだ海底ケーブルの運用企業から障害連絡を受けると、
- 関係省庁へ手続き
- 食料・水・燃料などの確保
- 保守対象のケーブルを積載
などの準備を行い、海底ケーブルの交換を行うとのことです。
ケーブルは敷設時期・保有/運用企業により異なるため、保守ではケーブルを搭載しておらず、出港時に交換対象のケーブルを積み込みます。
数は少ないようですが、光ファイバ以外に同軸の海底ケーブルも存在するとのこと。
災害対応
大規模災害時、
- 資機材・燃料
- DoCoMo の船上基地局
- 会議室・医務室・宿泊施設
などを被災地域に提供できるとのこと。
実際の活動例としては、北海道胆振東部地震があり、今後は首都圏直下型地震や南海トラフ巨大地震などを想定して備えているそうです。
推進装置
主推進機は微出力の調整に優れる電気駆動を採用しており、船首のスラスターで左右移動、船尾に 360 ℃回転可能なスクリューを駆動し、微細な機動を行えるようになっています。
ディーゼルエンジンなどの内燃機関は、出力の微調整が難しく、狙った緯度・経度に停泊したいケーブル船の推進機には向いていないとのこと。
ややこしいですが、内燃機関を搭載しないわけではなく、ダイハツ ディーゼル 6DCM-32e 3,500ps x4 基を搭載して発電を行い、スラスターを電気駆動します。車でいうとホンダ アコード ハイブリッドやノート e-Power などのシリーズ ハイブリッドが近い方式だと言えます。
- エンジンで発電
- 電気推進機を駆動
- プロペラを回転
一般的な船尾の舵は、推進時に向きを変化させる (推進しないと転舵できない) ものであるため、搭載されていません。
DPS (Dynamic Positioning System)
風・潮流などの影響を計算して GPS の位置情報を補正し、推進機と連動して特定の位置に船を保持できるシステム。
リアルタイムでズレを測定し、その他の外乱要因も補正できるそうです。
ROV (Remote Operated Vehicle) CaRBIS- Ⅳ
海底の確認やケーブルの切断・引き上げを行う、200 馬力の無人潜水機のこと。
船上の建物であるコントロール ルームから、液晶 9 画面とコンソールで操作します。
ケーブル クリッパーは 27 トンのケーブル引き上げ能力を持ち、これはケーブル エンジンと同じ能力になっています。
またウォーター ジェットで海底の砂を巻き上げて、ケーブルを埋設させる装備なども備えています。
他には金属探知機・マニピュレータ・カメラ・磁気センサーなどがあります。
海底ケーブルの障害原因
近海では漁で碇を下ろす・網に引っかかって誤って切断してしまう、浅海では地震・台風・潮流でケーブルがこすられて破損、といった原因があるそうです。
深海では潮流の影響が少ないため、逆に細いケーブルを使用してコストを下げられたりするとのこと。
深海探査機などでは深海のほうが水圧でコストがかかるため、これは意外でした。
航海期間
大体 40 日程度のミッションを行えるような資材を搭載できるそうです。
ケーブルタンク
2,500km のケーブルを収容でき、4 回で日米間 10,000km のケーブルを敷設できるようなスケールとなっています。
実際には米国側のケーブルは米国側から敷設・メンテナンスを行うほうが効率的なため、数分の一 + 余長程度のキャパシティがあれば問題ないようです。また、きずなは保守がメインの船であるため、キャパシティは低めと思われます。
ケーブルの積載はまだ自動化できていない分野で、どうしてもねじりなどでキレイに巻けないため、手動で巻いています。
光のリピータは組み込まれた状態でケーブル タンクに搭載されるため、敷設時はリニア ケーブル エンジンなどで巻き込み事故が起こらないように低速化して作業するそうです。スキー場のリフトのように、乗り込むときだけ低速化されるのに近いですね。
ドラム ケーブル エンジン
直径 2.7m の金属ドラムを使ったケーブル巻き上げ機です。ケーブルの敷設は海底の高さを考慮して行う必要があるため、送り出す速度を変化させて対応します。
巻き上げ時は横幅に対して均等に巻き上げ・敷設するため、2 つのフリーティングナイフライニングで均等になるように巻き付けます。
障害切り分け
リピータがある場合はどのリピータ間で障害が起きているか、リモートで電力を流してもらい流れた電流を ROV で確認するなどの手法を用いて、障害箇所を切り分け・特定していくとのこと。
リピータは 40-100km 程度の間隔で 1 つ設置されるパターンが多いそうで、切り分けは大変だと思います。
ケーブル交換
ケーブルは ROV のケーブル カッターで障害箇所を切断し、ケーブル クリッパーで引き上げて、新ケーブルで障害区間を除いて接続します。
交換は大体以下の手順となるようです。KDDI のオーシャンリンクの場合は以下。
- 障害ポイントの左右どちらかを切断
- 障害ポイントを特定
- 正常な部分 #1 のみの片側はブイをつけていったん沈めてしまう
- 船上に引き上げて、障害箇所を含むようにもう一箇所を切断し、異常な部分を含むケーブルを分離
- 新規ケーブルを正常な部分 #2 と接続
- 新規ケーブルと正常な部分 #1 と接続